Euler Method - Local Truncation Error

Local Truncation Error

The local truncation error of the Euler method is error made in a single step. It is the difference between the numerical solution after one step, and the exact solution at time . The numerical solution is given by

For the exact solution, we use the Taylor expansion mentioned in the section Derivation above:

The local truncation error (LTE) introduced by the Euler method is given by the difference between these equations:

This result is valid if has a bounded third derivative.

This shows that for small, the local truncation error is approximately proportional to . This makes the Euler method less accurate (for small ) than other higher-order techniques such as Runge-Kutta methods and linear multistep methods, for which the local truncation error is proportial to a higher power of the step size.

A slightly different formulation for the local truncation error can be obtained by using the Lagrange form for the remainder term in Taylor's theorem. If has a continuous second derivative, then there exists a such that

In the above expressions for the error, the second derivative of the unknown exact solution can be replaced by an expression involving the right-hand side of the differential equation. Indeed, it follows from the equation that

Read more about this topic:  Euler Method

Famous quotes containing the words local and/or error:

    There is the falsely mystical view of art that assumes a kind of supernatural inspiration, a possession by universal forces unrelated to questions of power and privilege or the artist’s relation to bread and blood. In this view, the channel of art can only become clogged and misdirected by the artist’s concern with merely temporary and local disturbances. The song is higher than the struggle.
    Adrienne Rich (b. 1929)

    We call contrary to nature what happens contrary to custom; nothing is anything but according to nature, whatever it may be, Let this universal and natural reason drive out of us the error and astonishment that novelty brings us.
    Michel de Montaigne (1533–1592)