Normal Subgroup - Normal Subgroups and Homomorphisms

Normal Subgroups and Homomorphisms

If N is normal subgroup, we can define a multiplication on cosets by

(a1N)(a2N) := (a1a2)N.

This turns the set of cosets into a group called the quotient group G/N. There is a natural homomorphism f: GG/N given by f(a) = aN. The image f(N) consists only of the identity element of G/N, the coset eN = N.

In general, a group homomorphism f: GH sends subgroups of G to subgroups of H. Also, the preimage of any subgroup of H is a subgroup of G. We call the preimage of the trivial group {e} in H the kernel of the homomorphism and denote it by ker(f). As it turns out, the kernel is always normal and the image f(G) of G is always isomorphic to G/ker(f) (the first isomorphism theorem). In fact, this correspondence is a bijection between the set of all quotient groups G/N of G and the set of all homomorphic images of G (up to isomorphism). It is also easy to see that the kernel of the quotient map, f: GG/N, is N itself, so we have shown that the normal subgroups are precisely the kernels of homomorphisms with domain G.

Read more about this topic:  Normal Subgroup

Famous quotes containing the word normal:

    Separation anxiety is normal part of development, but individual reactions are partly explained by experience, that is, by how frequently children have been left in the care of others.... A mother who is never apart from her young child may be saying to him or her subliminally: “You are only safe when I’m with you.”
    Cathy Rindner Tempelsman (20th century)