Normal Subgroup

In abstract algebra, a normal subgroup is a subgroup which is invariant under conjugation by members of the group of which it is a part. In other words, a subgroup H of a group G is normal in G if and only if aH = Ha for all a in G (see coset). Normal subgroups (and only normal subgroups) can be used to construct quotient groups from a given group.

Évariste Galois was the first to realize the importance of the existence of normal subgroups.

Read more about Normal Subgroup:  Definitions, Examples, Properties, Normal Subgroups and Homomorphisms

Famous quotes containing the word normal:

    You know that fiction, prose rather, is possibly the roughest trade of all in writing. You do not have the reference, the old important reference. You have the sheet of blank paper, the pencil, and the obligation to invent truer than things can be true. You have to take what is not palpable and make it completely palpable and also have it seem normal and so that it can become a part of experience of the person who reads it.
    Ernest Hemingway (1899–1961)