Examples of Normal Spaces
Most spaces encountered in mathematical analysis are normal Hausdorff spaces, or at least normal regular spaces:
- All metric spaces (and hence all metrizable spaces) are perfectly normal Hausdorff;
- All pseudometric spaces (and hence all pseudometrisable spaces) are perfectly normal regular, although not in general Hausdorff;
- All compact Hausdorff spaces are normal;
- In particular, the Stone–Čech compactification of a Tychonoff space is normal Hausdorff;
- Generalizing the above examples, all paracompact Hausdorff spaces are normal, and all paracompact regular spaces are normal;
- All paracompact topological manifolds are perfectly normal Hausdorff. However, there exist non-paracompact manifolds which are not even normal.
- All order topologies on totally ordered sets are hereditarily normal and Hausdorff.
- Every regular second-countable space is completely normal, and every regular Lindelöf space is normal.
Also, all fully normal spaces are normal (even if not regular). Sierpinski space is an example of a normal space that is not regular.
Read more about this topic: Normal Space
Famous quotes containing the words examples of, examples, normal and/or spaces:
“It is hardly to be believed how spiritual reflections when mixed with a little physics can hold peoples attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.”
—G.C. (Georg Christoph)
“No rules exist, and examples are simply life-savers answering the appeals of rules making vain attempts to exist.”
—André Breton (18961966)
“We have been weakened in our resistance to the professional anti-Communists because we know in our hearts that our so-called democracy has excluded millions of citizens from a normal life and the normal American privileges of health, housing and education.”
—Agnes E. Meyer (18871970)
“We should read history as little critically as we consider the landscape, and be more interested by the atmospheric tints and various lights and shades which the intervening spaces create than by its groundwork and composition.”
—Henry David Thoreau (18171862)