In topology and related branches of mathematics, a normal space is a topological space X that satisfies Axiom T4: every two disjoint closed sets of X have disjoint open neighborhoods. A normal Hausdorff space is also called a T4 space. These conditions are examples of separation axioms and their further strengthenings define completely normal Hausdorff spaces, or T5 spaces, and perfectly normal Hausdorff spaces, or T6 spaces.
Read more about Normal Space: Definitions, Examples of Normal Spaces, Examples of Non-normal Spaces, Properties, Relationships To Other Separation Axioms
Famous quotes containing the words normal and/or space:
“Everyone in the full enjoyment of all the blessings of his life, in his normal condition, feels some individual responsibility for the poverty of others. When the sympathies are not blunted by any false philosophy, one feels reproached by ones own abundance.”
—Elizabeth Cady Stanton (18151902)
“In bourgeois society, the French and the industrial revolution transformed the authorization of political space. The political revolution put an end to the formalized hierarchy of the ancien regimé.... Concurrently, the industrial revolution subverted the social hierarchy upon which the old political space was based. It transformed the experience of society from one of vertical hierarchy to one of horizontal class stratification.”
—Donald M. Lowe, U.S. historian, educator. History of Bourgeois Perception, ch. 4, University of Chicago Press (1982)