Methods For Solving The Problem
If the objective function f is linear and the constrained space is a polytope, the problem is a linear programming problem, which may be solved using well known linear programming solutions.
If the objective function is concave (maximization problem), or convex (minimization problem) and the constraint set is convex, then the program is called convex and general methods from convex optimization can be used in most cases.
If the objective function is a ratio of a concave and a convex function (in the maximization case) and the constraints are convex, then the problem can be transformed to a convex optimization problem using fractional programming techniques.
Several methods are available for solving nonconvex problems. One approach is to use special formulations of linear programming problems. Another method involves the use of branch and bound techniques, where the program is divided into subclasses to be solved with convex (minimization problem) or linear approximations that form a lower bound on the overall cost within the subdivision. With subsequent divisions, at some point an actual solution will be obtained whose cost is equal to the best lower bound obtained for any of the approximate solutions. This solution is optimal, although possibly not unique. The algorithm may also be stopped early, with the assurance that the best possible solution is within a tolerance from the best point found; such points are called ε-optimal. Terminating to ε-optimal points is typically necessary to ensure finite termination. This is especially useful for large, difficult problems and problems with uncertain costs or values where the uncertainty can be estimated with an appropriate reliability estimation.
Under differentiability and constraint qualifications, the Karush–Kuhn–Tucker (KKT) conditions provide necessary conditions for a solution to be optimal. Under convexity, these conditions are also sufficient.
Read more about this topic: Nonlinear Programming
Famous quotes containing the words solving the problem, methods, solving and/or problem:
“You are right to demand that an artist engage his work consciously, but you confuse two different things: solving the problem and correctly posing the question.”
—Anton Pavlovich Chekhov (18601904)
“The reading public is intellectually adolescent at best, and it is obvious that what is called significant literature will only be sold to this public by exactly the same methods as are used to sell it toothpaste, cathartics and automobiles.”
—Raymond Chandler (18881959)
“Certainly, young children can begin to practice making letters and numbers and solving problems, but this should be done without workbooks. Young children need to learn initiative, autonomy, industry, and competence before they learn that answers can be right or wrong.”
—David Elkind (20th century)
“And just as there are no words for the surface, that is,
No words to say what it really is, that it is not
Superficial but a visible core, then there is
No way out of the problem of pathos vs. experience.”
—John Ashbery (b. 1927)