Role in Free Probability Theory
The lattice of noncrossing partitions plays the same role in defining "free cumulants" in free probability theory that is played by the lattice of all partitions in defining joint cumulants in classical probability theory. To be more precise, let be a non-commutative probability space, a non-commutative random variable with free cumulants . (See free probability for terminology.) Then
where denotes the number of blocks of length in the non-crossing partition . That is, the moments of a non-commutative random variable can be expressed as a sum of free cumulants over the sum non-crossing partitions. This is the free analogue of the moment-cumulant formula in classical probability. See also Wigner semicircle distribution.
Read more about this topic: Noncrossing Partition
Famous quotes containing the words role in, role, free, probability and/or theory:
“Language makes it possible for a child to incorporate his parents verbal prohibitions, to make them part of himself....We dont speak of a conscience yet in the child who is just acquiring language, but we can see very clearly how language plays an indispensable role in the formation of conscience. In fact, the moral achievement of man, the whole complex of factors that go into the organization of conscience is very largely based upon language.”
—Selma H. Fraiberg (20th century)
“My role in society, or any artist or poets role, is to try and express what we all feel. Not to tell people how to feel. Not as a preacher, not as a leader, but as a reflection of us all.”
—John Lennon (19401980)
“I am truly free only when all human beings, men and women, are equally free. The freedom of other men, far from negating or limiting my freedom, is, on the contrary, its necessary premise and confirmation.”
—Mikhail Bakunin (18141876)
“Liberty is a blessing so inestimable, that, wherever there appears any probability of recovering it, a nation may willingly run many hazards, and ought not even to repine at the greatest effusion of blood or dissipation of treasure.”
—David Hume (17111776)
“It makes no sense to say what the objects of a theory are,
beyond saying how to interpret or reinterpret that theory in another.”
—Willard Van Orman Quine (b. 1908)