Limit Superior and Limit Inferior - Real-valued Functions

Real-valued Functions

Assume that a function is defined from a subset of the real numbers to the real numbers. As in the case for sequences, the limit inferior and limit superior are always well-defined if we allow the values +∞ and -∞; in fact, if both agree then the limit exists and is equal to their common value (again possibly including the infinities). For example, given f(x) = sin(1/x), we have lim supx0 f(x) = 1 and lim infx0 f(x) = -1. The difference between the two is a rough measure of how "wildly" the function oscillates, and in observation of this fact, it is called the oscillation of f at a. This idea of oscillation is sufficient to, for example, characterize Riemann-integrable functions as continuous except on a set of measure zero . Note that points of nonzero oscillation (i.e., points at which f is "badly behaved") are discontinuities which, unless they make up a set of zero, are confined to a negligible set.

Read more about this topic:  Limit Superior And Limit Inferior

Famous quotes containing the word functions:

    Empirical science is apt to cloud the sight, and, by the very knowledge of functions and processes, to bereave the student of the manly contemplation of the whole.
    Ralph Waldo Emerson (1803–1882)