Jacobson Radical - Examples

Examples

  • Rings for which J(R) is {0} are called semiprimitive rings, or sometimes "Jacobson semisimple rings". The Jacobson radical of any field, any von Neumann regular ring and any left or right primitive ring is {0}. The Jacobson radical of the integers is {0}.
  • The Jacobson radical of the ring Z/12Z (see modular arithmetic) is 6Z/12Z, which is the intersection of the maximal ideals 2Z/12Z and 3Z/12Z.
  • If K is a field and R is the ring of all upper triangular n-by-n matrices with entries in K, then J(R) consists of all upper triangular matrices with zeros on the main diagonal.
  • If K is a field and R = K] is a ring of formal power series, then J(R) consists of those power series whose constant term is zero. More generally: the Jacobson radical of every local ring is the unique maximal ideal of the ring, which consists precisely of the ring's non-units.
  • Start with a finite, acyclic quiver Γ and a field K and consider the quiver algebra KΓ (as described in the quiver article). The Jacobson radical of this ring is generated by all the paths in Γ of length ≥ 1.
  • The Jacobson radical of a C*-algebra is {0}. This follows from the Gelfand–Naimark theorem and the fact for a C*-algebra, a topologically irreducible *-representation on a Hilbert space is algebraically irreducible, so that its kernel is a primitive ideal in the purely algebraic sense (see spectrum of a C*-algebra).

Read more about this topic:  Jacobson Radical

Famous quotes containing the word examples:

    No rules exist, and examples are simply life-savers answering the appeals of rules making vain attempts to exist.
    André Breton (1896–1966)

    Histories are more full of examples of the fidelity of dogs than of friends.
    Alexander Pope (1688–1744)

    There are many examples of women that have excelled in learning, and even in war, but this is no reason we should bring ‘em all up to Latin and Greek or else military discipline, instead of needle-work and housewifry.
    Bernard Mandeville (1670–1733)