In abstract algebra, a division ring, also called a skew field, is a ring in which division is possible. Specifically, it is a non-trivial ring in which every non-zero element a has a multiplicative inverse, i.e., an element x with a·x = x·a = 1. Stated differently, a ring is a division ring if and only if the group of units is the set of all non-zero elements.
Division rings differ from fields only in that their multiplication is not required to be commutative. However, by Wedderburn's little theorem all finite division rings are commutative and therefore finite fields. Historically, division rings were sometimes referred to as fields, while fields were called “commutative fields”.
Read more about Division Ring: Relation To Fields and Linear Algebra, Examples, Ring Theorems, Related Notions
Famous quotes containing the words division and/or ring:
“Dont order any black things. Rejoice in his memory; and be radiant: leave grief to the children. Wear violet and purple.... Be patient with the poor people who will snivel: they dont know; and they think they will live for ever, which makes death a division instead of a bond.”
—George Bernard Shaw (18561950)
“I started out very quiet and I beat Mr. Turgenev. Then I trained hard and I beat Mr. de Maupassant. Ive fought two draws with Mr. Stendhal, and I think I had an edge in the last one. But nobodys going to get me in any ring with Mr. Tolstoy unless Im crazy or I keep getting better.”
—Ernest Hemingway (18991961)