Isostasy

Isostasy (Greek ísos "equal", stásis "standstill") is a term used in geology to refer to the state of gravitational equilibrium between the earth's lithosphere and asthenosphere such that the tectonic plates "float" at an elevation which depends on their thickness and density. This concept is invoked to explain how different topographic heights can exist at the Earth's surface. When a certain area of lithosphere reaches the state of isostasy, it is said to be in isostatic equilibrium. Isostasy is not a process that upsets equilibrium, but rather one which restores it (a negative feedback). It is generally accepted that the earth is a dynamic system that responds to loads in many different ways. However, isostasy provides an important 'view' of the processes that are happening in areas that are experiencing vertical movement. Certain areas (such as the Himalayas) are not in isostatic equilibrium, which has forced researchers to identify other reasons to explain their topographic heights (in the case of the Himalayas, which are still rising, by proposing that their elevation is being "propped-up" by the force of the impacting Indian plate).

In the simplest example, isostasy is the principle of buoyancy where an object immersed in a liquid is buoyed with a force equal to the weight of the displaced liquid. On a geological scale, isostasy can be observed where the Earth's strong lithosphere exerts stress on the weaker asthenosphere which, over geological time flows laterally such that the load of the lithosphere is accommodated by height adjustments.

The general term 'isostasy' was coined in 1889 by the American geologist Clarence Dutton.

Read more about Isostasy:  Isostatic Models, Isostatic Effects of Deposition and Erosion, Isostatic Effects of Plate Tectonics, Isostatic Effects of Ice Sheets, Eustasy and Relative Sea Level Change, Further Reading