Inverse Transform Sampling - Definition

Definition

The probability integral transform states that if is a continuous random variable with cumulative distribution function, then the random variable has a uniform distribution on . The inverse probability integral transform is just the inverse of this: specifically, if has a uniform distribution on and if has a cumulative distribution, then the cumulative distribution function of the random variable is .

Read more about this topic:  Inverse Transform Sampling

Famous quotes containing the word definition:

    Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.
    Nadine Gordimer (b. 1923)

    Was man made stupid to see his own stupidity?
    Is God by definition indifferent, beyond us all?
    Is the eternal truth man’s fighting soul
    Wherein the Beast ravens in its own avidity?
    Richard Eberhart (b. 1904)

    No man, not even a doctor, ever gives any other definition of what a nurse should be than this—”devoted and obedient.” This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.
    Florence Nightingale (1820–1910)