Definition
The probability integral transform states that if is a continuous random variable with cumulative distribution function, then the random variable has a uniform distribution on . The inverse probability integral transform is just the inverse of this: specifically, if has a uniform distribution on and if has a cumulative distribution, then the cumulative distribution function of the random variable is .
Read more about this topic: Inverse Transform Sampling
Famous quotes containing the word definition:
“Its a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was mine.”
—Jane Adams (20th century)
“Was man made stupid to see his own stupidity?
Is God by definition indifferent, beyond us all?
Is the eternal truth mans fighting soul
Wherein the Beast ravens in its own avidity?”
—Richard Eberhart (b. 1904)
“Im beginning to think that the proper definition of Man is an animal that writes letters.”
—Lewis Carroll [Charles Lutwidge Dodgson] (18321898)