Inverse Semigroup - Connections With Category Theory

Connections With Category Theory

The above composition of partial transformations of a set gives rise to a symmetric inverse semigroup. There is another way of composing partial transformations, which is more restrictive than that used above: two partial transformations α and β are composed if, and only if, the image of α is equal to the domain of β; otherwise, the composition αβ is undefined. Under this alternative composition, the collection of all partial one-one transformations of a set forms not an inverse semigroup but an inductive groupoid, in the sense of category theory. This close connection between inverse semigroups and inductive groupoids is embodied in the Ehresmann-Schein-Nambooripad Theorem, which states that an inductive groupoid can always be constructed from an inverse semigroup, and conversely. More precisely, an inverse semigroup is precisely a groupoid in the category of posets which is an etale groupoid with respect to its (dual) Alexandrov topology and whose poset of objects is a meet-semilattice.

Read more about this topic:  Inverse Semigroup

Famous quotes containing the words connections with, connections, category and/or theory:

    Growing up human is uniquely a matter of social relations rather than biology. What we learn from connections within the family takes the place of instincts that program the behavior of animals; which raises the question, how good are these connections?
    Elizabeth Janeway (b. 1913)

    The connections between and among women are the most feared, the most problematic, and the most potentially transforming force on the planet.
    Adrienne Rich (b. 1929)

    The truth is, no matter how trying they become, babies two and under don’t have the ability to make moral choices, so they can’t be “bad.” That category only exists in the adult mind.
    Anne Cassidy (20th century)

    Could Shakespeare give a theory of Shakespeare?
    Ralph Waldo Emerson (1803–1882)