Inverse Functions and Differentiation

Inverse Functions And Differentiation

In mathematics, the inverse of a function is a function that, in some fashion, "undoes" the effect of (see inverse function for a formal and detailed definition). The inverse of is denoted . The statements y = f(x) and x = f −1(y) are equivalent.

Their two derivatives, assuming they exist, are reciprocal, as the Leibniz notation suggests; that is:

This is a direct consequence of the chain rule, since

and the derivative of with respect to is 1.

Writing explicitly the dependence of on and the point at which the differentiation takes place and using Lagrange's notation, the formula for the derivative of the inverse becomes

Geometrically, a function and inverse function have graphs that are reflections, in the line y = x. This reflection operation turns the gradient of any line into its reciprocal.

Assuming that has an inverse in a neighbourhood of and that its derivative at that point is non-zero, its inverse is guaranteed to be differentiable at and have a derivative given by the above formula.

Read more about Inverse Functions And Differentiation:  Examples, Additional Properties, Higher Derivatives, Example

Famous quotes containing the words inverse and/or functions:

    Yet time and space are but inverse measures of the force of the soul. The spirit sports with time.
    Ralph Waldo Emerson (1803–1882)

    One of the most highly valued functions of used parents these days is to be the villains of their children’s lives, the people the child blames for any shortcomings or disappointments. But if your identity comes from your parents’ failings, then you remain forever a member of the child generation, stuck and unable to move on to an adulthood in which you identify yourself in terms of what you do, not what has been done to you.
    Frank Pittman (20th century)