Higher Derivatives
The chain rule given above is obtained by differentiating the identity x = f −1(f(x)) with respect to x. One can continue the same process for higher derivatives. Differentiating the identity with respect to x two times, one obtains
or replacing the first derivative using the formula above,
- .
Similarly for the third derivative:
or using the formula for the second derivative,
These formulas are generalized by the Faà di Bruno's formula.
These formulas can also be written using Lagrange's notation. If f and g are inverses, then
Read more about this topic: Inverse Functions And Differentiation
Famous quotes containing the word higher:
“Reality has become so absorbing that the streets, the television, and the journals have confiscated the public interest and people are no longer thirsty for culture on a higher level.”
—Andre Plesu (b. 1948)