Inverse Functions and Differentiation - Additional Properties

Additional Properties

  • Integrating this relationship gives
This is only useful if the integral exists. In particular we need to be non-zero across the range of integration.
It follows that a function that has a continuous derivative has an inverse in a neighbourhood of every point where the derivative is non-zero. This need not be true if the derivative is not continuous.

Read more about this topic:  Inverse Functions And Differentiation

Famous quotes containing the words additional and/or properties:

    The world will never be long without some good reason to hate the unhappy; their real faults are immediately detected, and if those are not sufficient to sink them into infamy, an additional weight of calumny will be superadded.
    Samuel Johnson (1709–1784)

    A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.
    Ralph Waldo Emerson (1803–1882)