Intermediate Value Theorem - History

History

For u = 0 above, the statement is also known as Bolzano's theorem. This theorem was first proved by Bernard Bolzano in 1817. Cauchy provided a proof in 1821. Both were inspired by the goal of formalizing the analysis of functions and the work of Lagrange. The idea that continuous functions possess the intermediate value property has an earlier origin. Simon Stevin proved the intermediate value theorem for polynomials (using a cubic as an example) by providing an algorithm for constructing the decimal expansion of the solution. The algorithm iteratively subdivides the interval into 10 parts, producing an additional decimal digit at each step of the iteration. Before the formal definition of continuity was given, the intermediate value property was given as part of the definition of a continuous function. Proponents include Louis Arbogast, who assumed the functions to have no jumps, satisfy the intermediate value property and have increments whose sizes corresponded to the sizes of the increments of the variable. Earlier authors held the result to be intuitively obvious, and requiring no proof. The insight of Bolzano and Cauchy was to define a general notion of continuity (in terms of infinitesimals in Cauchy's case, and using real inequalities in Bolzano's case), and to provide a proof based on such definitions.

Read more about this topic:  Intermediate Value Theorem

Famous quotes containing the word history:

    No one can understand Paris and its history who does not understand that its fierceness is the balance and justification of its frivolity. It is called a city of pleasure; but it may also very specially be called a city of pain. The crown of roses is also a crown of thorns. Its people are too prone to hurt others, but quite ready also to hurt themselves. They are martyrs for religion, they are martyrs for irreligion; they are even martyrs for immorality.
    Gilbert Keith Chesterton (1874–1936)

    All history is a record of the power of minorities, and of minorities of one.
    Ralph Waldo Emerson (1803–1882)

    Classes struggle, some classes triumph, others are eliminated. Such is history; such is the history of civilization for thousands of years.
    Mao Zedong (1893–1976)