Inert Pair Effect - Description

Description

As an example in group 13 the +1 oxidation state of Tl is the most stable and TlIII compounds are comparatively rare. The stability of the +1 oxidation state increases in the following sequence:

AlI < GaI < InI < TlI.

The same trend in stability is noted in groups 14, 15 and 16. As such the heaviest members of the groups, e.g. lead, bismuth and polonium are comparatively stable in oxidation states +2, +3, and +4 respectively.
The lower oxidation state in each of the elements in question has 2 valence electrons in s orbitals. On the face of it a simple explanation could be that the valence electrons in an s orbital are more tightly bound are of higher energy than electrons in p orbitals and therefore less likely to be involved in bonding. Unfortunately this explanation does not stand up. If the total ionization potentials (see below) of the 2 electrons in s orbitals (the 2nd + 3rd ionization potentials), are examined it can be seen that they increase in the sequence:

In < Al < Tl < Ga.
Ionization potentials for group 13 elements
kJ/mol
IP Boron Aluminium Gallium Indium Thallium
1st 800.6 577.5 578.8 558.3 589.4
2nd 2427.1 1816.7 1979.3 1820.6 1971
3rd 3659.7 2744.8 2963 2704 2878
(2nd + 3rd) 6086.8 4561.5 4942.3 4524.6 4849

The high IP (2nd + 3rd) of gallium is explained by d-block contraction, and the higher IP (2nd + 3rd) of thallium relative to indium, has been explained by relativistic effects.

An important consideration is that the compounds in the lower oxidation state are ionic, whereas in the higher oxidation state they tend to be covalent. Therefore covalency effects must also be taken into account. In fact an alternative explanation of the inert pair effect by Drago in 1958 attributed the effect to low M-X bond enthalpies for the heavy p-block elements and the fact that it requires less energy to oxidize an element to a low oxidation state than to a higher oxidation state. This energy has to be supplied by ionic or covalent bonds, so if bonding to a particular element is weak, the high oxidation state may be inaccessible. Further work involving relativistic effects confirms this. In view of this it has been suggested that the term inert pair effect should be viewed as a description rather than as an explanation.

Read more about this topic:  Inert Pair Effect

Famous quotes containing the word description:

    As they are not seen on their way down the streams, it is thought by fishermen that they never return, but waste away and die, clinging to rocks and stumps of trees for an indefinite period; a tragic feature in the scenery of the river bottoms worthy to be remembered with Shakespeare’s description of the sea-floor.
    Henry David Thoreau (1817–1862)

    An intentional object is given by a word or a phrase which gives a description under which.
    Gertrude Elizabeth Margaret Anscombe (b. 1919)

    It is possible—indeed possible even according to the old conception of logic—to give in advance a description of all ‘true’ logical propositions. Hence there can never be surprises in logic.
    Ludwig Wittgenstein (1889–1951)