Inaccessible Cardinal - Existence of A Proper Class of Inaccessibles

Existence of A Proper Class of Inaccessibles

There are many important axioms in set theory which assert the existence of a proper class of cardinals which satisfy a predicate of interest. In the case of inaccessibility, the corresponding axiom is the assertion that for every cardinal μ, there is an inaccessible cardinal κ which is strictly larger, μ < κ. Thus this axiom guarantees the existence of an infinite tower of inaccessible cardinals (and may occasionally be referred to as the inaccessible cardinal axiom). As is the case for the existence of any inaccessible cardinal, the inaccessible cardinal axiom is unprovable from the axioms of ZFC. Assuming ZFC, the inaccessible cardinal axiom is equivalent to the universe axiom of Grothendieck and Verdier: every set is contained in a Grothendieck universe. The axioms of ZFC along with the universe axiom (or equivalently the inaccessible cardinal axiom) are denoted ZFCU (which could be confused with ZFC with urelements). This axiomatic system is useful to prove for example that every category has an appropriate Yoneda embedding.

This is a relatively weak large cardinal axiom since it amounts to saying that ∞ is 1-inaccessible in the language of the next section, where ∞ denotes the least ordinal not in V, i.e. the class of all ordinals in your model.

Read more about this topic:  Inaccessible Cardinal

Famous quotes containing the words existence of, existence, proper and/or class:

    God is the efficient cause not only of the existence of things, but also of their essence.
    Corr. Individual things are nothing but modifications of the attributes of God, or modes by which the attributes of God are expressed in a fixed and definite manner.
    Baruch (Benedict)

    An “unemployed” existence is a worse negation of life than death itself.
    José Ortega Y Gasset (1883–1955)

    The proper aim of education is to promote significant learning. Significant learning entails development. Development means successively asking broader and deeper questions of the relationship between oneself and the world. This is as true for first graders as graduate students, for fledging artists as graying accountants.
    Laurent A. Daloz (20th century)

    For my own part, I had rather suffer any inconvenience from having to work occasionally in chambers and kitchen ... than witness the subservience in which the menial class is held in Europe.
    Harriet Martineau (1802–1876)