History of Superconductivity - High Temperature Superconductors

High Temperature Superconductors

In 1986, Bednorz and Mueller discovered superconductivity in a lanthanum-based cuprate perovskite material, which had a transition temperature of 35 K (Nobel Prize in Physics, 1987) and was the first of the high temperature superconductors. It was shortly found (by Ching-Wu Chu) that replacing the lanthanum with yttrium, i.e. making YBCO, raised the critical temperature to 92 K, which was important because liquid nitrogen could then be used as a refrigerant (at atmospheric pressure, the boiling point of nitrogen is 77 K.) This is important commercially because liquid nitrogen can be produced cheaply on-site with no raw materials, and is not prone to some of the problems (solid air plugs, etc.) of helium in piping. Many other cuprate superconductors have since been discovered, and the theory of superconductivity in these materials is one of the major outstanding challenges of theoretical condensed matter physics.

In March 2001 superconductivity of Magnesium diboride (MgB2) was found with Tc of 39 K.

In 2008 the oxypnictide or iron-based superconductors were discovered which led to a flurry of work in the hope that studying them would provide a theory of the cuprate superconductors.

Read more about this topic:  History Of Superconductivity

Famous quotes containing the words high and/or temperature:

    To that high Capital, where kingly Death
    Keeps his pale court in beauty and decay,
    He came.
    Percy Bysshe Shelley (1792–1822)

    This pond never breaks up so soon as the others in this neighborhood, on account both of its greater depth and its having no stream passing through it to melt or wear away the ice.... It indicates better than any water hereabouts the absolute progress of the season, being least affected by transient changes of temperature. A severe cold of a few days’ duration in March may very much retard the opening of the former ponds, while the temperature of Walden increases almost uninterruptedly.
    Henry David Thoreau (1817–1862)