In algebra, a group ring is a free module and at the same time a ring, constructed in a natural way from any given ring and any given group. As a free module, its ring of scalars is the given ring, and its basis is one-to-one with the given group. As a ring, its addition law is that of the free module and its multiplication extends "by linearity" the given group law on the basis. Less formally, a group ring is a generalization of a given group, by attaching to each element of the group a "weighting factor" from a given ring.
If the given ring is commutative, a group ring is also referred to as a group algebra, for it is indeed an algebra over the given ring.
The apparatus of group rings is especially useful in the theory of group representations.
Read more about Group Ring: Definition, Two Simple Examples, Some Basic Properties, Group Algebra Over A Finite Group, Group Rings Over An Infinite Group, Representations of A Group Ring, Filtration
Famous quotes containing the words group and/or ring:
“He hung out of the window a long while looking up and down the street. The worlds second metropolis. In the brick houses and the dingy lamplight and the voices of a group of boys kidding and quarreling on the steps of a house opposite, in the regular firm tread of a policeman, he felt a marching like soldiers, like a sidewheeler going up the Hudson under the Palisades, like an election parade, through long streets towards something tall white full of colonnades and stately. Metropolis.”
—John Dos Passos (18961970)
“I started out very quiet and I beat Mr. Turgenev. Then I trained hard and I beat Mr. de Maupassant. Ive fought two draws with Mr. Stendhal, and I think I had an edge in the last one. But nobodys going to get me in any ring with Mr. Tolstoy unless Im crazy or I keep getting better.”
—Ernest Hemingway (18991961)