Group Rings Over An Infinite Group
Much less is known in the case where G is countably infinite, or uncountable, and this is an area of active research. The case where R is the field of complex numbers is probably the one best studied. In this case, Irving Kaplansky proved that if a and b are elements of C with ab = 1, then ba = 1. Whether this is true if R is a field of positive characteristic remains unknown.
A long-standing conjecture of Kaplansky (~1940) says that if G is a torsion-free group, and K is a field, then the group ring K has no non-trivial zero divisors. This conjecture is equivalent to K having no non-trivial nilpotents under the same hypotheses for K and G.
In fact, the condition that K is a field can be relaxed to any ring that can be embedded into an integral domain.
The conjecture remains open in full generality, however some special cases of torsion-free groups have been shown to satisfy the zero divisor conjecture. These include:
- Unique product groups (which include virtually abelian groups, orderable groups, and free groups, since they are orderable)
- Elementary amenable groups
- Diffuse groups - in particular, groups that act freely isometrically on R-trees, and the fundamental groups of surface groups except for the fundamental groups of direct sums of one, two or three copies of the projective plane.
The case of G being a topological group is discussed in greater detail in the article on group algebras.
Read more about this topic: Group Ring
Famous quotes containing the words group, rings and/or infinite:
“JuryA group of twelve men who, having lied to the judge about their hearing, health, and business engagements, have failed to fool him.”
—H.L. (Henry Lewis)
“If a man do not erect in this age his own tomb ere he dies, he shall live no longer in monument than the bell rings and the widow weeps.”
—William Shakespeare (15641616)
“So that if you would form a just judgment of what is of infinite importance to you not to be misled in,namely, in what degree of real merit you stand ... call in religion and morality.Look,What is written in the law of God?How readest thou?Consult calm reason and the unchangeable obligations of justice and truth;Mwhat say they?”
—Laurence Sterne (17131768)