Definition
Let G be a group, written multiplicatively, and let R be a ring. The group ring of G over R, which we will denote by R, is the set of mappings f : G → R of finite support, where the product of a scalar in R and a vector (or mapping) f is defined as the vector, and the sum of two vectors f and g is defined as the vector . To turn the commutative group R into a ring, we define the product of f and g to be the vector
The summation is legitimate because f and g are of finite support, and the ring axioms are readily verified.
Some variations in the notation and terminology are in use. In particular, the mappings such as f : G → R are sometimes written as what are called "formal linear combinations of elements of G, with coefficients in R":
or simply
where this doesn't cause confusion.
Read more about this topic: Group Ring
Famous quotes containing the word definition:
“Its a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was mine.”
—Jane Adams (20th century)
“... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lensif we are unaware that women even have a historywe live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.”
—Adrienne Rich (b. 1929)
“Scientific method is the way to truth, but it affords, even in
principle, no unique definition of truth. Any so-called pragmatic
definition of truth is doomed to failure equally.”
—Willard Van Orman Quine (b. 1908)