Glossary of Group Theory - Abelian Groups

Abelian Groups

The category of groups can be subdivided in several ways. A particularly well-understood class of groups are the so-called abelian (in honor of Niels Abel, or commutative) groups, i.e. the ones satisfying

Another way of saying this is that the commutator

equals the identity element. A non-abelian group is a group that is not abelian. Even more particular, cyclic groups are the groups generated by a single element. Being either isomorphic to Z or to Zn, the integers modulo n, they are always abelian. Any finitely generated abelian group is known to be a direct sum of groups of these two types. The category of abelian groups is an abelian category. In fact, abelian groups serve as the prototype of abelian categories. A converse is given by Mitchell's embedding theorem.

Read more about this topic:  Glossary Of Group Theory

Famous quotes containing the word groups:

    In America every woman has her set of girl-friends; some are cousins, the rest are gained at school. These form a permanent committee who sit on each other’s affairs, who “come out” together, marry and divorce together, and who end as those groups of bustling, heartless well-informed club-women who govern society. Against them the Couple of Ehepaar is helpless and Man in their eyes but a biological interlude.
    Cyril Connolly (1903–1974)