In mathematics and abstract algebra, group theory studies the algebraic structures known as groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as rings, fields, and vector spaces can all be seen as groups endowed with additional operations and axioms. Groups recur throughout mathematics, and the methods of group theory have strongly influenced many parts of algebra. Linear algebraic groups and Lie groups are two branches of group theory that have experienced tremendous advances and have become subject areas in their own right.
Various physical systems, such as crystals and the hydrogen atom, can be modelled by symmetry groups. Thus group theory and the closely related representation theory have many applications in physics and chemistry.
One of the most important mathematical achievements of the 20th century was the collaborative effort, taking up more than 10,000 journal pages and mostly published between 1960 and 1980, that culminated in a complete classification of finite simple groups.
Read more about Group Theory: History, Main Classes of Groups, Combinatorial and Geometric Group Theory, Representation of Groups, Connection of Groups and Symmetry, Applications of Group Theory
Famous quotes containing the words group and/or theory:
“JuryA group of twelve men who, having lied to the judge about their hearing, health, and business engagements, have failed to fool him.”
—H.L. (Henry Lewis)
“Freud was a hero. He descended to the Underworld and met there stark terrors. He carried with him his theory as a Medusas head which turned these terrors to stone.”
—R.D. (Ronald David)