Glossary of Graph Theory - Distance

The distance dG(u, v) between two (not necessary distinct) vertices u and v in a graph G is the length of a shortest path between them. The subscript G is usually dropped when there is no danger of confusion. When u and v are identical, their distance is 0. When u and v are unreachable from each other, their distance is defined to be infinity ∞.

The eccentricity εG(v) of a vertex v in a graph G is the maximum distance from v to any other vertex. The diameter diam(G) of a graph G is the maximum eccentricity over all vertices in a graph; and the radius rad(G), the minimum. When there are two components in G, diam(G) and rad(G) defined to be infinity ∞. Trivially, diam(G) ≤ 2 rad(G). Vertices with maximum eccentricity are called peripheral vertices. Vertices of minimum eccentricity form the center. A tree has at most two center vertices.

The Wiener index of a vertex v in a graph G, denoted by WG(v) is the sum of distances between v and all others. The Wiener index of a graph G, denoted by W(G), is the sum of distances over all pairs of vertices. An undirected graph's Wiener polynomial is defined to be Σ qd(u,v) over all unordered pairs of vertices u and v. Wiener index and Wiener polynomial are of particular interest to mathematical chemists.

The k-th power Gk of a graph G is a supergraph formed by adding an edge between all pairs of vertices of G with distance at most k. A second power of a graph is also called a square.

A k-spanner is a spanning subgraph, S, in which every two vertices are at most k times as far apart on S than on G. The number k is the dilation. k-spanner is used for studying geometric network optimization.

Read more about this topic:  Glossary Of Graph Theory

Famous quotes containing the word distance:

    It is the simplest relation of phenomena, and describes the commonest sensations with more truth than science does, and the latter at a distance slowly mimics its style and methods.
    Henry David Thoreau (1817–1862)

    Let me approach at least, and touch thy hand.
    [Samson:] Not for thy life, lest fierce remembrance wake
    My sudden rage to tear thee joint by joint.
    At distance I forgive thee, go with that;
    Bewail thy falsehood, and the pious works
    It hath brought forth to make thee memorable
    Among illustrious women, faithful wives:
    Cherish thy hast’n’d widowhood with the gold
    Of Matrimonial treason: so farewel.
    John Milton (1608–1674)

    A petty reason perhaps why novelists more and more try to keep a distance from journalists is that novelists are trying to write the truth and journalists are trying to write fiction.
    Graham Greene (1904–1991)