Formal Mathematical Description of The Phenomenon
Let be a piecewise continuously differentiable function which is periodic with some period . Suppose that at some point, the left limit and right limit of the function differ by a non-zero gap :
For each positive integer N ≥ 1, let SN f be the Nth partial Fourier series
where the Fourier coefficients are given by the usual formulae
Then we have
and
but
More generally, if is any sequence of real numbers which converges to as, and if the gap a is positive then
and
If instead the gap a is negative, one needs to interchange limit superior with limit inferior, and also interchange the ≤ and ≥ signs, in the above two inequalities.
Read more about this topic: Gibbs Phenomenon
Famous quotes containing the words formal, mathematical, description and/or phenomenon:
“On every formal visit a child ought to be of the party, by way of provision for discourse.”
—Jane Austen (17751817)
“As we speak of poetical beauty, so ought we to speak of mathematical beauty and medical beauty. But we do not do so; and that reason is that we know well what is the object of mathematics, and that it consists in proofs, and what is the object of medicine, and that it consists in healing. But we do not know in what grace consists, which is the object of poetry.”
—Blaise Pascal (16231662)
“The next Augustan age will dawn on the other side of the Atlantic. There will, perhaps, be a Thucydides at Boston, a Xenophon at New York, and, in time, a Virgil at Mexico, and a Newton at Peru. At last, some curious traveller from Lima will visit England and give a description of the ruins of St Pauls, like the editions of Balbec and Palmyra.”
—Horace Walpole (17171797)
“When the ice is covered with snow, I do not suspect the wealth under my feet; that there is as good as a mine under me wherever I go. How many pickerel are poised on easy fin fathoms below the loaded wain! The revolution of the seasons must be a curious phenomenon to them. At length the sun and wind brush aside their curtain, and they see the heavens again.”
—Henry David Thoreau (18171862)