General Number Field Sieve
In number theory, the general number field sieve (GNFS) is the most efficient classical algorithm known for factoring integers larger than 100 digits. Heuristically, its complexity for factoring an integer n (consisting of bits) is of the form
(in L-notation), where ln is the logarithm in base e. It is a generalization of the special number field sieve: while the latter can only factor numbers of a certain special form, the general number field sieve can factor any number apart from prime powers (which are trivial to factor by taking roots). When the term number field sieve (NFS) is used without qualification, it refers to the general number field sieve.
The principle of the number field sieve (both special and general) can be understood as an improvement to the simpler rational sieve or quadratic sieve. When using such algorithms to factor a large number n, it is necessary to search for smooth numbers (i.e. numbers with small prime factors) of order n1/2. The size of these values is exponential in the size of n (see below). The general number field sieve, on the other hand, manages to search for smooth numbers that are subexponential in the size of n. Since these numbers are smaller, they are more likely to be smooth than the numbers inspected in previous algorithms. This is the key to the efficiency of the number field sieve. In order to achieve this speed-up, the number field sieve has to perform computations and factorizations in number fields. This results in many rather complicated aspects of the algorithm, as compared to the simpler rational sieve.
Note that log2 n is the number of bits in the binary representation of n, that is the size of the input to the algorithm, so any element of the order nc for a constant c is exponential in log n. The running time of the number field sieve is super-polynomial but sub-exponential in the size of the input.
Read more about General Number Field Sieve: Number Fields, Method, Improving Polynomial Choice, Implementations
Famous quotes containing the words general, number, field and/or sieve:
“There was not a tree as far as we could see, and that was many miles each way, the general level of the upland being about the same everywhere. Even from the Atlantic side we overlooked the Bay, and saw to Manomet Point in Plymouth, and better from that side because it was the highest.”
—Henry David Thoreau (18171862)
“At thirty years a woman asks her lover to give her back the esteem she has forfeited for his sake; she lives only for him, her thoughts are full of his future, he must have a great career, she bids him make it glorious; she can obey, entreat, command, humble herself, or rise in pride; times without number she brings comfort when a young girl can only make moan.”
—HonorĂ© De Balzac (17991850)
“Because mothers and daughters can affirm and enjoy their commonalities more readily, they are more likely to see how they might advance their individual interests in tandem, without one having to be sacrificed for the other.”
—Mary Field Belenky (20th century)
“Its like pushing marbles through a sieve. It means the sieve will never be the same again.”
—Before the 1972 Democratic Convention in Miami. As quoted in Crazy Salad, ch. 6, by Nora Ephron (1972)