General Number Field Sieve - Number Fields

Number Fields

Suppose f is an k-degree polynomial over Q (the rational numbers), and r is a complex root of f. Then, f(r) = 0, which can be rearranged to express rk as a linear combination of powers of r less than k. This equation can be used to reduce away any powers of rk. For example, if f(x) = x2 + 1 and r is the imaginary unit i, then i2 + 1=0, or i2 = −1. This allows us to define the complex product:

(a+bi)(c+di) = ac + (ad+bc)i + (bd)i2 = (acbd) + (ad+bc)i.

In general, this leads directly to the algebraic number field Q, which can be defined as the set of real numbers given by:

ak−1rk−1 + ... + a1r1 + a0r0, where a0,...,al−1 in Q.

The product of any two such values can be computed by taking the product as polynomials, then reducing any powers of rk as described above, yielding a value in the same form. To ensure that this field is actually k-dimensional and does not collapse to an even smaller field, it is sufficient that f is an irreducible polynomial. Similarly, one may define the number field ring Z as the subset of Q where a0,...,ak−1 are restricted to be integers.

Read more about this topic:  General Number Field Sieve

Famous quotes containing the words number and/or fields:

    To finish the moment, to find the journey’s end in every step of the road, to live the greatest number of good hours, is wisdom. It is not the part of men, but of fanatics, or of mathematicians, if you will, to say, that, the shortness of life considered, it is not worth caring whether for so short a duration we were sprawling in want, or sitting high. Since our office is with moments, let us husband them.
    Ralph Waldo Emerson (1803–1882)

    If at first you don’t succeed, try again. Then quit. No use being a damn fool about it.
    —W.C. Fields (1879–1946)