Standard Fundamental Polygons
An orientable closed surface of genus n has the following standard fundamental polygon:
This fundamental polygon can be viewed as the result of gluing n tori together, and hence the surface is sometimes called the n-fold torus. ("Gluing" two surfaces means cutting a disk out of each and identifying the circular boundaries of the resulting holes.)
A non-orientable closed surface of (non-orientable) genus n has the following standard fundamental polygon:
Alternately, the non-orientable surfaces can be given in one of two forms, as n Klein bottles glued together (this may be called the n-fold Klein bottle, with non-orientable genus 2n), or as n glued real projective planes (the n-fold crosscap, with non-orientable genus n). The n-fold Klein bottle is given by the 4n-sided polygon
(note the final is missing the superscript −1; this flip, as compared to the orientable case, being the source of the non-orientability). The (2n + 1)-fold crosscap is given by the 4n+2-sided polygon
That these two cases exhaust all the possibilities for a compact non-orientable surface was shown by Henri Poincaré.
Read more about this topic: Fundamental Polygon
Famous quotes containing the words standard and/or fundamental:
“A dwarf who brings a standard along with him to measure his own sizetake my word, is a dwarf in more articles than one.”
—Laurence Sterne (17131768)
“The political truths declared in that solemn manner acquire by degrees the character of fundamental maxims of free Government, and as they become incorporated with national sentiment, counteract the impulses of interest and passion.”
—James Madison (17511836)