In formal logic and related branches of mathematics, a functional predicate, or function symbol, is a logical symbol that may be applied to an object term to produce another object term. Functional predicates are also sometimes called mappings, but that term has other meanings as well. In a model, a function symbol will be modelled by a function.
Specifically, the symbol F in a formal language is a functional symbol if, given any symbol X representing an object in the language, F(X) is again a symbol representing an object in that language. In typed logic, F is a functional symbol with domain type T and codomain type U if, given any symbol X representing an object of type T, F(X) is a symbol representing an object of type U. One can similarly define function symbols of more than one variable, analogous to functions of more than one variable; a function symbol in zero variables is simply a constant symbol.
Now consider a model of the formal language, with the types T and U modelled by sets and and each symbol X of type T modelled by an element in . Then F can be modelled by the set
which is simply a function with domain and codomain . It is a requirement of a consistent model that = whenever = .
Read more about Functional Predicate: Introducing New Function Symbols, Doing Without Functional Predicates
Famous quotes containing the words functional and/or predicate:
“Stay-at-home mothers, . . . their self-esteem constantly assaulted, . . . are ever more fervently concerned that their offspring turn out better so they wont have to stoop to say I told you so. Working mothers, . . . their self-esteem corroded by guilt, . . . are praying their kids turn out functional so they can stop being defensive and apologetic and instead assert See? I did do it all.”
—Melinda M. Marshall (20th century)
“The predicate of truth-value of a proposition, therefore, is a mere fictive quality; its place is in an ideal world of science only, whereas actual science cannot make use of it. Actual science instead employs throughout the predicate of weight.”
—Hans Reichenbach (18911953)