Number of Groups of A Given Order
Given a positive integer n, it is not at all a routine matter to determine how many isomorphism types of groups of order n there are. Every group of prime order is cyclic, since Lagrange's theorem implies that the cyclic subgroup generated by any of its non-identity elements is the whole group. If n is the square of a prime, then there are exactly two possible isomorphism types of group of order n, both of which are abelian. If n is a higher power of a prime, then results of Graham Higman and Charles Sims give asymptotically correct estimates for the number of isomorphism types of groups of order n, and the number grows very rapidly as the power increases.
Depending on the prime factorization of n, some restrictions may be placed on the structure of groups of order n, as a consequence, for example, of results such as the Sylow theorems. For example, every group of order pq is cyclic when q < p are primes with p-1 not divisible by q. For a necessary and sufficient condition, see cyclic number.
If n is squarefree, then any group of order n is solvable. A theorem of William Burnside, proved using group characters, states that every group of order n is solvable when n is divisible by fewer than three distinct primes. By the Feit–Thompson theorem, which has a long and complicated proof, every group of order n is solvable when n is odd.
For every positive integer n, most groups of order n are solvable. To see this for any particular order is usually not difficult (for example, there is, up to isomorphism, one non-solvable group and 12 solvable groups of order 60) but the proof of this for all orders uses the classification of finite simple groups. For any positive integer n there are at most two simple groups of order n, and there are infinitely many positive integers n for which there are two non-isomorphic simple groups of order n.
Read more about this topic: Finite Group
Famous quotes containing the words number of, number, groups and/or order:
“If we remembered everything, we should on most occasions be as ill off as if we remembered nothing. It would take us as long to recall a space of time as it took the original time to elapse, and we should never get ahead with our thinking. All recollected times undergo, accordingly, what M. Ribot calls foreshortening; and this foreshortening is due to the omission of an enormous number of facts which filled them.”
—William James (18421910)
“In the multitude of middle-aged men who go about their vocations in a daily course determined for them much in the same way as the tie of their cravats, there is always a good number who once meant to shape their own deeds and alter the world a little.”
—George Eliot [Mary Ann (or Marian)
“... until both employers and workers groups assume responsibility for chastising their own recalcitrant children, they can vainly bay the moon about ignorant and unfair public criticism. Moreover, their failure to impose voluntarily upon their own groups codes of decency and honor will result in more and more necessity for government control.”
—Mary Barnett Gilson (1877?)
“He had killed and put to earth so many that his sword broke in two. At length he thought to himself that that was enough massacring and killing for one day, and that the rest should be allowed to escape in order to spread the news.”
—François Rabelais (14941553)