Finite Group - Number of Groups of A Given Order

Number of Groups of A Given Order

Given a positive integer n, it is not at all a routine matter to determine how many isomorphism types of groups of order n there are. Every group of prime order is cyclic, since Lagrange's theorem implies that the cyclic subgroup generated by any of its non-identity elements is the whole group. If n is the square of a prime, then there are exactly two possible isomorphism types of group of order n, both of which are abelian. If n is a higher power of a prime, then results of Graham Higman and Charles Sims give asymptotically correct estimates for the number of isomorphism types of groups of order n, and the number grows very rapidly as the power increases.

Depending on the prime factorization of n, some restrictions may be placed on the structure of groups of order n, as a consequence, for example, of results such as the Sylow theorems. For example, every group of order pq is cyclic when q < p are primes with p-1 not divisible by q. For a necessary and sufficient condition, see cyclic number.

If n is squarefree, then any group of order n is solvable. A theorem of William Burnside, proved using group characters, states that every group of order n is solvable when n is divisible by fewer than three distinct primes. By the Feit–Thompson theorem, which has a long and complicated proof, every group of order n is solvable when n is odd.

For every positive integer n, most groups of order n are solvable. To see this for any particular order is usually not difficult (for example, there is, up to isomorphism, one non-solvable group and 12 solvable groups of order 60) but the proof of this for all orders uses the classification of finite simple groups. For any positive integer n there are at most two simple groups of order n, and there are infinitely many positive integers n for which there are two non-isomorphic simple groups of order n.

Read more about this topic:  Finite Group

Famous quotes containing the words number of, number, groups and/or order:

    In proportion as our inward life fails, we go more constantly and desperately to the post office. You may depend on it, that the poor fellow who walks away with the greatest number of letters, proud of his extensive correspondence, has not heard from himself this long while.
    Henry David Thoreau (1817–1862)

    But however the forms of family life have changed and the number expanded, the role of the family has remained constant and it continues to be the major institution through which children pass en route to adulthood.
    Bernice Weissbourd (20th century)

    Under weak government, in a wide, thinly populated country, in the struggle against the raw natural environment and with the free play of economic forces, unified social groups become the transmitters of culture.
    Johan Huizinga (1872–1945)

    The intellectual is a middle-class product; if he is not born into the class he must soon insert himself into it, in order to exist. He is the fine nervous flower of the bourgeoisie.
    Louise Bogan (1897–1970)