In mathematics, more specifically in the field of group theory, a solvable group (or soluble group) is a group that can be constructed from abelian groups using extensions. That is, a solvable group is a group whose derived series terminates in the trivial subgroup.
Historically, the word "solvable" arose from Galois theory and the proof of the general unsolvability of quintic equation. Specifically, a polynomial equation is solvable by radicals if and only if the corresponding Galois group is solvable.
Read more about Solvable Group: Definition, Examples, Properties, Burnside's Theorem
Famous quotes containing the words solvable and/or group:
“The problems of the world, AIDS, cancer, nuclear war, pollution, are, finally, no more solvable than the problem of a tree which has borne fruit: the apples are overripe and they are fallingwhat can be done?... Nothing can be done, and nothing needs to be done. Something is being donethe organism is preparing to rest.”
—David Mamet (b. 1947)
“Even in harmonious families there is this double life: the group life, which is the one we can observe in our neighbours household, and, underneath, anothersecret and passionate and intensewhich is the real life that stamps the faces and gives character to the voices of our friends. Always in his mind each member of these social units is escaping, running away, trying to break the net which circumstances and his own affections have woven about him.”
—Willa Cather (18731947)