Explicitly Constructing Finite Fields
Given a prime power q = pn, we may explicitly construct a finite field with q elements as follows. Select a monic irreducible polynomial f(T) of degree n in Fp. (Such a polynomial is guaranteed to exist, once we know that a finite field of size q exists: just take the minimal polynomial of any primitive element for that field over the subfield Fp.) Then Fp/(f(T)) is a field of size q. Here, Fp denotes the ring of all polynomials in T with coefficients in Fp, (f(T)) denotes the ideal generated by f(T), and the quotient is meant in the sense of quotient rings — the set of polynomials in T with coefficients in Fp modulo (f(T)).
Read more about this topic: Finite Field
Famous quotes containing the words explicitly, constructing, finite and/or fields:
“People who talk about revolution and class struggle without referring explicitly to everyday life, without understanding what is subversive about love and what is positive in the refusal of constraints, such people have a corpse in their mouth.”
—Raoul Vaneigem (b. 1934)
“The very hope of experimental philosophy, its expectation of constructing the sciences into a true philosophy of nature, is based on induction, or, if you please, the a priori presumption, that physical causation is universal; that the constitution of nature is written in its actual manifestations, and needs only to be deciphered by experimental and inductive research; that it is not a latent invisible writing, to be brought out by the magic of mental anticipation or metaphysical mediation.”
—Chauncey Wright (18301875)
“Put shortly, these are the two views, then. One, that man is intrinsically good, spoilt by circumstance; and the other that he is intrinsically limited, but disciplined by order and tradition to something fairly decent. To the one party mans nature is like a well, to the other like a bucket. The view which regards him like a well, a reservoir full of possibilities, I call the romantic; the one which regards him as a very finite and fixed creature, I call the classical.”
—Thomas Ernest Hulme (18831917)
“During the first World War women in the United States had a chance to try their capacities in wider fields of executive leadership in industry. Must we always wait for war to give us opportunity? And must the pendulum always swing back in the busy world of work and workers during times of peace?”
—Mary Barnett Gilson (1877?)