Power Series
The generating function of the Fibonacci sequence is the power series
This series has a simple and interesting closed-form solution for :
This solution can be proven by using the Fibonacci recurrence to expand each coefficient in the infinite sum defining :
Solving the equation for results in the closed form solution.
In particular, math puzzle-books note the curious value, or more generally
for all integers .
More generally,
Read more about this topic: Fibonacci Number
Famous quotes containing the words power and/or series:
“Science is Christian, not when it condemns itself to the letter of things, but when, in the infinitely little, it discovers as many mysteries and as much depth and power as in the infinitely great.”
—Edgar Quinet (18031875)
“Rosalynn said, Jimmy, if we could only get Prime Minister Begin and President Sadat up here on this mountain for a few days, I believe they might consider how they could prevent another war between their countries. That gave me the idea, and a few weeks later, I invited both men to join me for a series of private talks. In September 1978, they both came to Camp David.”
—Jimmy Carter (James Earl Carter, Jr.)