Engel Expansions of Rational Numbers
Every positive rational number has a unique finite Engel expansion. In the algorithm for Engel expansion, if ui is a rational number x/y, then ui+1 = (−y mod x)/y. Therefore, at each step, the numerator in the remaining fraction ui decreases and the process of constructing the Engel expansion must terminate in a finite number of steps. Every rational number also has a unique infinite Engel expansion: using the identity
the final digit n in a finite Engel expansion can be replaced by an infinite sequence of (n + 1)s without changing its value. For example
This is analogous to the fact that any rational number with a finite decimal representation also has an infinite decimal representation (see 0.999...).
Erdős, Rényi, and Szüsz asked for nontrivial bounds on the length of the finite Engel expansion of a rational number x/y; this question was answered by Erdős and Shallit, who proved that the number of terms in the expansion is O(y1/3 + ε) for any ε > 0.
Read more about this topic: Engel Expansion
Famous quotes containing the words engel, rational and/or numbers:
“Shakespeare was not meant for taverns, nor for tavern louts.”
—Samuel G. Engel (19041984)
“We must not suppose that, because a man is a rational animal, he will, therefore, always act rationally; or, because he has such or such a predominant passion, that he will act invariably and consequentially in pursuit of it. No, we are complicated machines; and though we have one main spring that gives motion to the whole, we have an infinity of little wheels, which, in their turns, retard, precipitate, and sometime stop that motion.”
—Philip Dormer Stanhope, 4th Earl Chesterfield (16941773)
“The only phenomenon with which writing has always been concomitant is the creation of cities and empires, that is the integration of large numbers of individuals into a political system, and their grading into castes or classes.... It seems to have favored the exploitation of human beings rather than their enlightenment.”
—Claude Lévi-Strauss (b. 1908)