Engel Expansion

The Engel expansion of a positive real number x is the unique non-decreasing sequence of positive integers such that

Rational numbers have a finite Engel expansion, while irrational numbers have an infinite Engel expansion. If x is rational, its Engel expansion provides a representation of x as an Egyptian fraction. Engel expansions are named after Friedrich Engel, who studied them in 1913.

An expansion analogous to an Engel expansion, in which alternating terms are negative, is called a Pierce expansion.

Read more about Engel Expansion:  Engel Expansions, Continued Fractions, and Fibonacci, Algorithm For Computing Engel Expansions, Example, Engel Expansions of Rational Numbers, Engel Expansions For Some Well-known Constants, Growth Rate of The Expansion Terms

Famous quotes containing the words engel and/or expansion:

    Now folks, I hereby declare the first church of Tombstone, which ain’t got no name yet or no preacher either, officially dedicated. Now I don’t pretend to be no preacher, but I’ve read the Good Book from cover to cover and back again, and I nary found one word agin dancin’. So we’ll commence by havin’ a dad blasted good dance.
    —Samuel G. Engel (1904–1984)

    Every expansion of government in business means that government in order to protect itself from the political consequences of its errors and wrongs is driven irresistibly without peace to greater and greater control of the nation’s press and platform. Free speech does not live many hours after free industry and free commerce die.
    Herbert Hoover (1874–1964)