Continued Fraction - Finite Continued Fractions

Finite Continued Fractions

Every finite continued fraction represents a rational number, and every rational number can be represented in precisely two different ways as a finite continued fraction. These two representations agree except in their final terms. In the longer representation the final term in the continued fraction is 1; the shorter representation drops the final 1, but increases the new final term by 1. The final element in the short representation is therefore always greater than 1, if present. In symbols:

For example,

Read more about this topic:  Continued Fraction

Famous quotes containing the words finite and/or continued:

    We know then the existence and nature of the finite, because we also are finite and have extension. We know the existence of the infinite and are ignorant of its nature, because it has extension like us, but not limits like us. But we know neither the existence nor the nature of God, because he has neither extension nor limits.
    Blaise Pascal (1623–1662)

    Along the journey we commonly forget its goal. Almost every vocation is chosen and entered upon as a means to a purpose but is ultimately continued as a final purpose in itself. Forgetting our objectives is the most frequent stupidity in which we indulge ourselves.
    Friedrich Nietzsche (1844–1900)