In mathematics, a fundamental solution for a linear partial differential operator L is a formulation in the language of distribution theory of the older idea of a Green's function. In terms of the Dirac delta function δ(x), a fundamental solution F is the solution of the inhomogeneous equation
- LF = δ(x).
Here F is a priori only assumed to be a Schwartz distribution.
This concept was long known for the Laplacian in two and three dimensions. It was investigated for all dimensions for the Laplacian by Marcel Riesz. The existence of a fundamental solution for any operator with constant coefficients — the most important case, directly linked to the possibility of using convolution to solve an arbitrary right hand side — was shown by Malgrange and Leon Ehrenpreis.
Read more about Fundamental Solution: Example, Motivation, Signal Processing
Famous quotes containing the words fundamental and/or solution:
“One of the fundamental reasons why so many doctors become cynical and disillusioned is precisely because, when the abstract idealism has worn thin, they are uncertain about the value of the actual lives of the patients they are treating. This is not because they are callous or personally inhuman: it is because they live in and accept a society which is incapable of knowing what a human life is worth.”
—John Berger (b. 1926)
“I herewith commission you to carry out all preparations with regard to ... a total solution of the Jewish question in those territories of Europe which are under German influence.... I furthermore charge you to submit to me as soon as possible a draft showing the ... measures already taken for the execution of the intended final solution of the Jewish question.”
—Hermann Goering (18931946)