Fundamental Solution

In mathematics, a fundamental solution for a linear partial differential operator L is a formulation in the language of distribution theory of the older idea of a Green's function. In terms of the Dirac delta function δ(x), a fundamental solution F is the solution of the inhomogeneous equation

LF = δ(x).

Here F is a priori only assumed to be a Schwartz distribution.

This concept was long known for the Laplacian in two and three dimensions. It was investigated for all dimensions for the Laplacian by Marcel Riesz. The existence of a fundamental solution for any operator with constant coefficients — the most important case, directly linked to the possibility of using convolution to solve an arbitrary right hand side — was shown by Malgrange and Leon Ehrenpreis.

Read more about Fundamental Solution:  Example, Motivation, Signal Processing

Famous quotes containing the words fundamental and/or solution:

    I believe the declaration that “all men are created equal” is the great fundamental principle upon which our free institutions rest.
    Abraham Lincoln (1809–1865)

    The Settlement ... is an experimental effort to aid in the solution of the social and industrial problems which are engendered by the modern conditions of life in a great city. It insists that these problems are not confined to any one portion of the city. It is an attempt to relieve, at the same time, the overaccumulation at one end of society and the destitution at the other ...
    Jane Addams (1860–1935)