Cartesian Product - Category Theory

Category Theory

Although the Cartesian product is traditionally applied to sets, category theory provides a more general interpretation of the product of mathematical structures. This is distinct from, although related to, the notion of a Cartesian square in category theory, which is a generalization of the fiber product.

Exponentiation is the right adjoint of the Cartesian product; thus any category with a Cartesian product (and a final object) is a Cartesian closed category.

Read more about this topic:  Cartesian Product

Famous quotes containing the words category and/or theory:

    I see no reason for calling my work poetry except that there is no other category in which to put it.
    Marianne Moore (1887–1972)

    Freud was a hero. He descended to the “Underworld” and met there stark terrors. He carried with him his theory as a Medusa’s head which turned these terrors to stone.
    —R.D. (Ronald David)