Bernoulli Polynomials - Relation To Falling Factorial

Relation To Falling Factorial

The Bernoulli polynomials may be expanded in terms of the falling factorial as

B_{n+1}(x) = B_{n+1} + \sum_{k=0}^n
\frac{n+1}{k+1}
\left\{ \begin{matrix} n \\ k \end{matrix} \right\}
(x)_{k+1}

where and

denotes the Stirling number of the second kind. The above may be inverted to express the falling factorial in terms of the Bernoulli polynomials:

(x)_{n+1} = \sum_{k=0}^n
\frac{n+1}{k+1}
\left
\left(B_{k+1}(x) - B_{k+1} \right)

where

denotes the Stirling number of the first kind.

Read more about this topic:  Bernoulli Polynomials

Famous quotes containing the words relation to, relation and/or falling:

    You see, I am alive, I am alive
    I stand in good relation to the earth
    I stand in good relation to the gods
    I stand in good relation to all that is beautiful
    I stand in good relation to the daughter of Tsen-tainte
    You see, I am alive, I am alive
    N. Scott Momaday (b. 1934)

    Parents ought, through their own behavior and the values by which they live, to provide direction for their children. But they need to rid themselves of the idea that there are surefire methods which, when well applied, will produce certain predictable results. Whatever we do with and for our children ought to flow from our understanding of and our feelings for the particular situation and the relation we wish to exist between us and our child.
    Bruno Bettelheim (20th century)

    Life stood on the top stair a moment
    Waved her last gray slander down the stair,
    I will not forget her absent eyes
    Her other smile like one rose
    Falling, falling everywhere....
    Allen Tate (1899–1979)