Bernoulli Polynomials - Relation To Falling Factorial

Relation To Falling Factorial

The Bernoulli polynomials may be expanded in terms of the falling factorial as

B_{n+1}(x) = B_{n+1} + \sum_{k=0}^n
\frac{n+1}{k+1}
\left\{ \begin{matrix} n \\ k \end{matrix} \right\}
(x)_{k+1}

where and

denotes the Stirling number of the second kind. The above may be inverted to express the falling factorial in terms of the Bernoulli polynomials:

(x)_{n+1} = \sum_{k=0}^n
\frac{n+1}{k+1}
\left
\left(B_{k+1}(x) - B_{k+1} \right)

where

denotes the Stirling number of the first kind.

Read more about this topic:  Bernoulli Polynomials

Famous quotes containing the words relation to, relation and/or falling:

    Science is the language of the temporal world; love is that of the spiritual world. Man, indeed, describes more than he explains; while the angelic spirit sees and understands. Science saddens man; love enraptures the angel; science is still seeking, love has found. Man judges of nature in relation to itself; the angelic spirit judges of it in relation to heaven. In short to the spirits everything speaks.
    Honoré De Balzac (1799–1850)

    Science is the language of the temporal world; love is that of the spiritual world. Man, indeed, describes more than he explains; while the angelic spirit sees and understands. Science saddens man; love enraptures the angel; science is still seeking, love has found. Man judges of nature in relation to itself; the angelic spirit judges of it in relation to heaven. In short to the spirits everything speaks.
    Honoré De Balzac (1799–1850)

    The health of the soul is something we can be no more sure of than that of the body; and though a man may seem far from the passions, yet he is in as much danger of falling into them as one in a perfect state of health of having a fit of sickness.
    François, Duc De La Rochefoucauld (1613–1680)