Explicit Formula
In mathematics, the explicit formula for L-functions are relations between sums over the complex number zeroes of an L-function and sums over prime powers, introduced by Riemann (1859) for the Riemann zeta function. Such explicit formulae have been applied also to questions on bounding the discriminant of an algebraic number field, and the conductor of a number field.
Read more about Explicit Formula: Riemann's Explicit Formula, Weil's Explicit Formula, Generalizations, Applications, Hilbert–Pólya Conjecture
Famous quotes containing the words explicit and/or formula:
“I think taste is a social concept and not an artistic one. Im willing to show good taste, if I can, in somebody elses living room, but our reading life is too short for a writer to be in any way polite. Since his words enter into anothers brain in silence and intimacy, he should be as honest and explicit as we are with ourselves.”
—John Updike (b. 1932)
“Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.”
—Walter Pater (18391894)