Arithmetic Progression - Sum

Sum

This section is about Finite arithmetic series. For Infinite arithmetic series, see Infinite arithmetic series.

The sum of the members of a finite arithmetic progression is called an arithmetic series.

Expressing the arithmetic series in two different ways:

Adding both sides of the two equations, all terms involving d cancel:

Dividing both sides by 2 produces a common form of the equation:

An alternate form results from re-inserting the substitution: :

In 499 AD Aryabhata, a prominent mathematician-astronomer from the classical age of Indian mathematics and Indian astronomy, gave this method in the Aryabhatiya (section 2.18).

So, for example, the sum of the terms of the arithmetic progression given by an = 3 + (n-1)(5) up to the 50th term is

Read more about this topic:  Arithmetic Progression

Famous quotes containing the word sum:

    To sum up:
    1. The cosmos is a gigantic fly-wheel making 10,000 revolutions a minute.
    2. Man is a sick fly taking a dizzy ride on it.
    3. Religion is the theory that the wheel was designed and set spinning to give him the ride.
    —H.L. (Henry Lewis)

    They are but beggars that can count their worth,
    But my true love is grown to such excess
    I cannot sum up sum of half my wealth.
    William Shakespeare (1564–1616)

    Without doubt God is the universal moving force, but each being is moved according to the nature that God has given it.... He directs angels, man, animals, brute matter, in sum all created things, but each according to its nature, and man having been created free, he is freely led. This rule is truly the eternal law and in it we must believe.
    Joseph De Maistre (1753–1821)