Arithmetic Progression - Product

Product

The product of the members of a finite arithmetic progression with an initial element a1, common differences d, and n elements in total is determined in a closed expression

where denotes the rising factorial and denotes the Gamma function. (Note however that the formula is not valid when is a negative integer or zero.)

This is a generalization from the fact that the product of the progression is given by the factorial and that the product

for positive integers and is given by

Taking the example from above, the product of the terms of the arithmetic progression given by an = 3 + (n-1)(5) up to the 50th term is

Read more about this topic:  Arithmetic Progression

Famous quotes containing the word product:

    Evil is committed without effort, naturally, fatally; goodness is always the product of some art.
    Charles Baudelaire (1821–1867)

    Culture is a sham if it is only a sort of Gothic front put on an iron building—like Tower Bridge—or a classical front put on a steel frame—like the Daily Telegraph building in Fleet Street. Culture, if it is to be a real thing and a holy thing, must be the product of what we actually do for a living—not something added, like sugar on a pill.
    Eric Gill (1882–1940)

    The seashore is a sort of neutral ground, a most advantageous point from which to contemplate this world. It is even a trivial place. The waves forever rolling to the land are too far-traveled and untamable to be familiar. Creeping along the endless beach amid the sun-squall and the foam, it occurs to us that we, too, are the product of sea-slime.
    Henry David Thoreau (1817–1862)