Analyticity Of Holomorphic Functions
In complex analysis, a branch of mathematics, a complex-valued function ƒ of a complex variable z:
- is said to be holomorphic at a point a if it is differentiable at every point within some open disk centered at a, and
- is said to be analytic at a if in some open disk centered at a it can be expanded as a convergent power series
- (this implies that the radius of convergence is positive).
One of the most important theorems of complex analysis is that holomorphic functions are analytic. Among the corollaries of this theorem are
- the identity theorem that two holomorphic functions that agree at every point of an infinite set with an accumulation point inside the intersection of their domains also agree everywhere in some open set, and
- the fact that, since power series are infinitely differentiable, so are holomorphic functions (this is in contrast to the case of real differentiable functions), and
- the fact that the radius of convergence is always the distance from the center a to the nearest singularity; if there are no singularities (i.e., if ƒ is an entire function), then the radius of convergence is infinite. Strictly speaking, this is not a corollary of the theorem but rather a by-product of the proof.
- no bump function on the complex plane can be entire. In particular, on any connected open subset of the complex plane, there can be no bump function defined on that set which is holomorphic on the set. This has important ramifications for the study of complex manifolds, as it precludes the use of partitions of unity. In contrast the partition of unity is a tool which can be used on any real manifold.
Read more about Analyticity Of Holomorphic Functions: Proof, Remarks
Famous quotes containing the word functions:
“Mark the babe
Not long accustomed to this breathing world;
One that hath barely learned to shape a smile,
Though yet irrational of soul, to grasp
With tiny fingerto let fall a tear;
And, as the heavy cloud of sleep dissolves,
To stretch his limbs, bemocking, as might seem,
The outward functions of intelligent man.”
—William Wordsworth (17701850)
Related Phrases
Related Words