Proof
The argument, first given by Cauchy, hinges on Cauchy's integral formula and the power series development of the expression
- .
Suppose ƒ is differentiable everywhere within some open disk centered at a. Let z be within that open disk. Let C be a positively oriented (i.e., counterclockwise) circle centered at a, lying within that open disk but farther from a than z is. Starting with Cauchy's integral formula, we have
To justify the interchange of the sum and the integral, one must notice that in the intersection of |(z − a)/(w − a)| ≤ r < 1 and some closed domain containing C, ƒ(w)/(w − a) is holomorphic and therefore bounded by some positive number M. So we have
The Weierstrass M-test says the series converges uniformly, and thus the interchange of the sum and the integral is justified.
Since the factor (z − a)n does not depend on the variable of integration w, it can be pulled out:
And now the integral and the factor of 1/(2πi) do not depend on z, i.e., as a function of z, that whole expression is a constant cn, so we can write:
and that is the desired power series.
Read more about this topic: Analyticity Of Holomorphic Functions
Famous quotes containing the word proof:
“The fact that several men were able to become infatuated with that latrine is truly the proof of the decline of the men of this century.”
—Charles Baudelaire (18211867)
“He who has never failed somewhere, that man can not be great. Failure is the true test of greatness. And if it be said, that continual success is a proof that a man wisely knows his powers,it is only to be added, that, in that case, he knows them to be small.”
—Herman Melville (18191891)
“The source of Pyrrhonism comes from failing to distinguish between a demonstration, a proof and a probability. A demonstration supposes that the contradictory idea is impossible; a proof of fact is where all the reasons lead to belief, without there being any pretext for doubt; a probability is where the reasons for belief are stronger than those for doubting.”
—Andrew Michael Ramsay (16861743)