Power Series

In mathematics, a power series (in one variable) is an infinite series of the form

where an represents the coefficient of the nth term, c is a constant, and x varies around c (for this reason one sometimes speaks of the series as being centered at c). This series usually arises as the Taylor series of some known function; the Taylor series article contains many examples.

In many situations c is equal to zero, for instance when considering a Maclaurin series. In such cases, the power series takes the simpler form


f(x) = \sum_{n=0}^\infty a_n x^n = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \cdots.

These power series arise primarily in analysis, but also occur in combinatorics (under the name of generating functions) and in electrical engineering (under the name of the Z-transform). The familiar decimal notation for real numbers can also be viewed as an example of a power series, with integer coefficients, but with the argument x fixed at ⅟10. In number theory, the concept of p-adic numbers is also closely related to that of a power series.

Read more about Power Series:  Examples, Radius of Convergence, Analytic Functions, Formal Power Series, Power Series in Several Variables, Order of A Power Series

Famous quotes containing the words power and/or series:

    If you look at history you’ll find that no state has been so plagued by its rulers as when power has fallen into the hands of some dabbler in philosophy or literary addict.
    Desiderius Erasmus (c. 1466–1536)

    As Cuvier could correctly describe a whole animal by the contemplation of a single bone, so the observer who has thoroughly understood one link in a series of incidents should be able to accurately state all the other ones, both before and after.
    Sir Arthur Conan Doyle (1859–1930)