Algebraic Number Field

An algebraic number field (or simply number field) is a finite degree field extension of the field of rational numbers. Here its dimension as a vector space over Q is simply called its degree.

Read more about Algebraic Number Field:  Examples, Algebraicity and Ring of Integers, Regular Representation, Trace and Determinant, Places, Ramification, Galois Groups and Galois Cohomology, Local-global Principle

Famous quotes containing the words algebraic, number and/or field:

    I have no scheme about it,—no designs on men at all; and, if I had, my mode would be to tempt them with the fruit, and not with the manure. To what end do I lead a simple life at all, pray? That I may teach others to simplify their lives?—and so all our lives be simplified merely, like an algebraic formula? Or not, rather, that I may make use of the ground I have cleared, to live more worthily and profitably?
    Henry David Thoreau (1817–1862)

    You are the majority—in number and intelligence; therefore you are the force—which is justice. Some are scholars, others are owners; a glorious day will come when the scholars will be owners and the owners scholars. Then your power will be complete, and no man will protest against it.
    Charles Baudelaire (1821–1867)

    I don’t like comparisons with football. Baseball is an entirely different game. You can watch a tight, well-played football game, but it isn’t exciting if half the stadium is empty. The violence on the field must bounce off a lot of people. But you can go to a ball park on a quiet Tuesday afternoon with only a few thousand people in the place and thoroughly enjoy a one-sided game. Baseball has an aesthetic, intellectual appeal found in no other team sport.
    Bowie Kuhn (b. 1926)