Fixed Points of Omega
For any ordinal α we have
In many cases is strictly greater than α. For example, for any successor ordinal α this holds. There are, however, some limit ordinals which are fixed points of the omega function, because of the fixed-point lemma for normal functions. The first such is the limit of the sequence
Any weakly inaccessible cardinal is also a fixed point of the aleph function. This can be shown in ZFC by noting that if is a weakly inaccessible cardinal then for every initial ordinal of a cardinal smaller than which is not the itself a weakly inaccessible cardinal, is different than : either is a successor ordinal (in which case is a successor cardinal and hence not weakly inaccessible) or is a limit ordinal whose cofinality is smaller than its associated cardinal (in which case is larger than its cofinality and hence not weakly inaccessible). Thus, if there were weakly inaccessible cardinals which are not fixed points of the function, the smallest of these would not be the image of any ordinal by the function.
Read more about this topic: Aleph Number
Famous quotes containing the words fixed and/or points:
“Our live experiences, fixed in aphorisms, stiffen into cold epigrams. Our hearts blood, as we write it, turns to mere dull ink.”
—F.H. (Francis Herbert)
“The three main medieval points of view regarding universals are designated by historians as realism, conceptualism, and nominalism. Essentially these same three doctrines reappear in twentieth-century surveys of the philosophy of mathematics under the new names logicism, intuitionism, and formalism.”
—Willard Van Orman Quine (b. 1908)