Adjoint Representation Of A Lie Group
In mathematics, the adjoint representation (or adjoint action) of a Lie group G is the natural representation of G on its own Lie algebra. This representation is the linearized version of the action of G on itself by conjugation.
Read more about Adjoint Representation Of A Lie Group: Formal Definition, Examples, Properties, Roots of A Semisimple Lie Group, Variants and Analogues
Famous quotes containing the words lie and/or group:
“The seas vast depths lie open to the fish;
Wherever the breezes blow the bird may fly;
So to the brave man every lands a home.”
—Ovid (Publius Ovidius Naso)
“Once it was a boat, quite wooden
and with no business, no salt water under it
and in need of some paint. It was no more
than a group of boards. But you hoisted her, rigged her.
Shes been elected.”
—Anne Sexton (19281974)