Adjoint Representation Of A Lie Group
In mathematics, the adjoint representation (or adjoint action) of a Lie group G is the natural representation of G on its own Lie algebra. This representation is the linearized version of the action of G on itself by conjugation.
Read more about Adjoint Representation Of A Lie Group: Formal Definition, Examples, Properties, Roots of A Semisimple Lie Group, Variants and Analogues
Famous quotes containing the words lie and/or group:
“The creation of a thousand forests is in one acorn, and Egypt, Greece, Rome, Gaul, Britain, America, lie folded in the first man.”
—Ralph Waldo Emerson (18031882)
“The boys think they can all be athletes, and the girls think they can all be singers. Thats the way to fame and success. ...as a group blacks must give up their illusions.”
—Kristin Hunter (b. 1931)